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ABSTRACT
Current walkability and living conditions assessments lack appro-
priate evaluation of urban green space and tree canopy which
improves comfort of walking and living mainly for elderly. The
study compares municipal registers of trees and green areas with
satellite-derived Leaf Area Index (LAI) using Sentinel-2 imagery
processed in SNAP. For evaluation correlation analysis, multiple
linear regression (MLR) and XGboost modelling was applied for
two types of pilot areas in Ostrava, CZ. Relationships between LAI
and green, building and water areas, as well as number and kernel
density of registered trees were explored. S-pilot areas with almost
completed evidence of tree and green areas provide much better
modelling results (R2=0.41) than U-pilot areas. For quantification
of urban green space and trees, the LAI performs much better than
the municipal evidence. XGboost modelling outperforms MLR and
overcomes issues with heteroscedascity and normality of models’
residuals.
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1 INTRODUCTION
Trees represent an important part of viable urban environments in
that they are essential for the well-being of citizens, biodiversity,
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healthy air condition and mitigation of urban microclimates. Their
occurrence positively influences inhabitants’ propensity to walk
and relax outside, especially for elderly and other vulnerable groups
of people.

An environmental mobility determinant represents one of five
fundamental categories of elderly mobility, usually recognised as a
part of the “comfort” aspect. A 10-year review of urban walkability
[1] discovered only 21% of papers discuss some components of
comfort such as the weather, aesthetics of buildings, enclosure
ratio, cleanliness, shade, and the presence of trees. Alvez et al.
[2] designed Walkability Index for Elderly Health and included
in the “urban scene” dimension the existence of trees/vegetation
but with a simplified classification of urban condition into three
levels (no trees/vegetation, moderate, and strong occurrence). A
walkability index which quantifies tree occurrences or even tree
shade does not yet exist. The reason for this is simple – a lack
of data. To overcome this issue, we evaluated two possible data
sources – digital municipal evidence of trees and green space, and
several satellite-derived vegetation indices where the LAI seems to
match best for quantification of the tree coverage.

Current cities recognize the value of city trees for the urban
environment, carefully invest in them, expand green areas, water
trees, and protect them against diseases and pests. The required
digital evidence of public trees is commonly based on regular updat-
ing and monitoring. The problem is that this evidence covers only
trees owned by municipalities, usually standalone trees, and is not
comprised of all trees in parks and forests within a city, nor does it
include private gardens with many trees. Additionally, tree registers
usually do not contain important parameters for assessment of tree
growth and its canopy such as age, height, and crown diameter.

The Leaf Area Index (LAI) is specified as the one-sided green
leaf area per unit surface area. The LAI serves as a measure for the
amount of plant canopy and its density. Both direct methods (e.g.,
leaf traps) and indirect methods (e.g., hemispherical photography,
LIDAR or satellite imagery [3-4] can be used for enumeration of LAI.
LAI was utilized e.g., to measure the urban forest impact of decreas-
ing UV and temperature, the effects of surface coverage types on
temperature and relative humidity of the urban environment, and
to explore different distributions of dense trees to ameliorate urban
microclimates. A satellite-derived LAI faces several challenges – it
measures ‘effective’ leaf area which is less than actual LAI due to
the expected random distribution of leaves [5], or underestimation
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for really high LAI values due to trends of saturation of vegetation
indices caused by the limited penetrability of sunlight [6].

Large amounts of data and their asymmetric distribution require
advanced processing and utilization of machine learning methods.
Among others, the XGBoost (Extreme Gradient Boosting) method
offers parallelized tree building, cache awareness and out of core
computing, regularization for avoiding overfitting, efficient han-
dling of missing data and in build cross-validation capability [7].

This paper evaluates the possibility of using the LAI instead of
municipal evidence of trees and green areas for assessment of urban
green/tree coverage, useful e.g., for walkability modelling.

2 STUDY AREA AND DATA SOURCES
The city of Ostrava (population 290,000; area 214 km2) lies in the
NE corner of Czechia close to the Polish and Slovakian borders. Its
heterogeneous urbanization consists of an agglomeration of urban
blocks separated by crop fields, forests, and industrial parks.

To assess LAI, Sentinel 2 MSI image (9.9.2021, processing level
1C) was processed using SNAP (Sentinel Application Platform). The
LAI was calculated with a Biophysical Processor using the following
reflectance bands (B3, B4, B5, B6, B7, B8A, B11 and B12), as well as
other information such as solar zenith and relative azimuth angles
using radiative transfer models. For the Sentinel-2, images have
been implemented in two different neural network architectures,
the NNET 10m and NNET 20m.

Geographic Information System of Ostrava City (GISMO) com-
prises various data sets to support urban planning and development,
maintenance of municipal property, and solving environmental and
social issues in the city. The important part here is a register of
trees, currently including 154,874 individuals. Unfortunately, the
evidence covers only trees which are municipal property, thus only
trees occurring in public spaces such as streets or parks. Private
trees (in gardens, industrial, agricultural or forested areas) are not
included. Also, some public spaces (parks, riverbanks, etc.) are not
fully covered due to the number of trees and their natural reproduc-
tion. To address these issues, two types of pilot areas were delimited
in Ostrava: S-areas with almost complete evidence of trees (dom-
inating public spaces with many registered trees) where a good
correspondence between evidence of trees and real tree coverage
is expected (9 suitable pilot areas, sizes 0.9-3.4 km2), (fig 1), and
U-areas with weak tree evidence due to prevailing family dwellings
with private gardens, or natural or seminatural areas (i.e., river
banks, parks, forests) (4 unsuitable pilot areas, sizes 0.9-1.6 km2)
(fig. 2). Other auxiliary datasets include buildings, water bodies
(OSM), and green areas (GISMO).

3 METHODOLOGY
Sentinel-2 MSI image processing covers atmospheric corrections,
resampling, subset and LAI calculation. Atmospheric correction
using Sen2Cor (ESA) was applied to the input Sentinel-2 L1C data.
Sen2Cor is a standalone application that allows atmospheric, ter-
rain and cirrus correction of TOA level 1C input data. Further, all
bands were resampled to 10m pixel size. Finally, the Biophysical
Processor S2 was used to compute LAI (fig. 1,2 down). All opera-
tions were conducted in free available SNAP software version 9.0.0
(https://step.esa.int/main/download/snap-download/). According to

Figure 1: Green space and trees in one S-pilot area (Ostrava-
Poruba) (up) and LAI values (down)

Figure 2: Green space and trees in one U-pilot area (Ostrava-
Silesian) (up) and LAI values (down)

the recommendation of [8], LAI values are satisfactorily evaluated
in the range of 0.0-8.0 values; cases with higher values outside toler-
ance limits are considered invalid. All cases with LAI values outside
this range were excluded from the following statistical processing.
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For the same spatial scheme, all other factors were enumerated.
Point evidence of trees were aggregated to the cell units corre-
sponding to LAI pixels (tree_count). Point locations of tree trunks
is obviously not sufficient to represent a canopy. Trees create dif-
ferent crown sizes, on Ostrava’s streets usually ranging from 0 to
18 m, with an average of 8 m. Accordingly, a kernel density estima-
tion (KDE) of tree coverage was calculated (ArcMap v.10.8, Kernel
density function, 10 m bandwidth and 10 m cell size) (tree_kde).
Other supporting data is green areas registered by GISMO mainly
for the purpose of lawn cutting and maintenance. The indicator
was calculated as a percentage of pixel size coverage by green areas
(green_area). Tree coverage is naturally suppressed by water bod-
ies and buildings. Similar to green areas, water and building areas
were enumerated with expectations of negative correlations to tree
coverage and LAI (water_area, build_area).

An Explanatory Data Analysis provided basic statistical charac-
teristics of data sets including histograms. Multiple scatter plots
enabled evaluation of types of relationships between variables. Bi-
variate correlation analysis included Pearson and Spearman coeffi-
cients of correlation to explore the pairwise correlations between all
variables. Further, multiple linear regression (MLR, SPSS version 18)
is applied to understand the relationship of LAI (a dependent vari-
able) on this set of independent factors, including multicollinearity
evaluation, ANOVA, and assessment of beta standardized coeffi-
cients.

Finally, an advanced machine learning method, im-
plemented in Python programming language, XGBoost
(https://xgboost.readthedocs.io/en/stable/) was applied to
improve the model and overcome issues of MLR evaluation.
XGBoost [9], is a decision-tree-based ensemble machine learning
algorithm that uses a gradient boosting framework. Boosting
algorithms combine weak learners into a strong learner in an
iterative way. The following parameters were tuned for XGBoost
in this study: learning rate, number of gradient boosted trees
(n_estimators), L1 regularization of leaf weights, minimum loss
reduction, maximum depth of the tree (max_depth), fraction of fea-
tures to be evaluated at each split (colsample_bylevel), subsampling
rate (subsample), and random number seed (random_state).

In order to interpret the model and its results, we used unified
framework SHAP (Shapley Additive Values), a widely used method
to explain the predictions of machine learning models [10] where
the model’s prediction f(x) can be represented as the sum of its
computed SHAP values, plus a fixed base value (Lundberg, Lee,
2017). To explain our model, we used SHAP TreeExplainer() class.
The feature importance bar plot displays the important features in
descending order of their importance and the magnitude of feature
attributions. The summary plot combines feature importance with
feature effects. Each point on the summary plot is a Shapley value
for a feature and an instance. The features that influence themodel’s
outcome in a positive way are highlighted in red, whereas the
features that impact themodel’s outcome negatively are highlighted
in blue [10].

Figure 3: Spearman r between LAI and tree_kde for both types
of pilot areas (p=0.001) and partial regression plots (MLR) for
S-pilot areas

4 RESULTS
Results of the bivariate correlation analysis for two main interested
variables LAI and tree_kde show important differences of correla-
tion between suitable and unsuitable areas (fig. 3 up). While the
Spearman coefficient of correlation for S-pilot area ranges between
0.283 and 0.474 (p=0.001), the correlations for U-pilot areas are
significantly lower (0.081-0.155).

MLR for S-pilot areas (N=160997) reached adjusted R2=0.354
(p=0.000) and ANOVA discovered that the model explains 35% of
data variability. MLR for U-pilot areas (N=49789) provides only
R2=0.136 and ANOVA indicates the model explains only 14% of data
variability. Bothmodels show satisfactory lowmulticollinearity (VIF
in the range of 1.181-1.355) but residuals are not N distributed and
some of the predictors indicate issues of heteroscedascity in partial
regression plots (fig. 3 down).

To overcome issues in MLR models, XGBoost was applied. In
order to evaluate the performance of the XGBoost model, we split
our dataset into two train and validation subsets (80:20) using scikit-
learn library (version 1.1.1) and the method train_test_split(). Train
data is used for learning while validation data enables an unbi-
ased evaluation of the model while tuning model hyperparame-
ters (R2 and RMSE metrics). XGBoost model is defined as thus:
model_xgb = xgb.XGBRegressor(n_estimators = 100, learning_rate
= 0.3, max_depth = 3, reg_alpha=0.5, gamma= 0, subsample = 1 ,
booster = ’gbtree’, colsample_bylevel = 1, random_state = 44)
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Figure 4: Training and test losses for S-pilot (up) and U-pilot
(down) areas

The configuration of hyperparameters of XGBoost models is
based on the performance model evaluation for each iteration of
the algorithm during training and validation with a plot depicting
learning curves using the train and test dataset where the x-axis is
the number of iterations of the algorithm (or the number of trees
added to the ensemble) and the y-axis is the RMSE of the model.

XGBoost was applied to both datasets covering suitable (S-pilot)
and unsuitable (U-pilot) areas. The model for S-pilot areas achieved
a coefficient of determination R2=0.41. The plot of training loss
decreases to a point of stability with RMSE=0.475 (fig.4 up). Con-
versely, the model for U-pilot areas, as expected, achieved only
R2=0.23. The plot of training loss decreases to a point of stability
around 0.54 (RMSE 0.54) (fig.4 down). The plot of test loss decreases
to a point of stability and has, compared to the previous case, a
bigger gap with the training loss suggesting overfitting.

The feature importance bar plots (fig.5) illustrate a feature im-
portance as defined by SHAP algorithm. For S-pilot areas, the
green_area variable represents the most important feature, chang-
ing the predicted LAI value by 27 percentage points. It is followed
by the build_area variable, changing the predicted value by 12 per-
centage points. The influence of registered trees is about 3 and 1.5
percentage points for KDE and tree counts respectively. Surpris-
ingly, the water_area variable has very little impact on the model’s
predictions.

Results for U-pilot areas show changes in the order of feature
priorities. As expected, the building area variable had the highest
impact (16%), followed by the green_area variable (13%). While

Figure 5: Average feature importance (mean SHAP value) for
S-pilot (up) and U-pilot (down) areas

Figure 6: SHAP values of variables in the XGboost model for
S-pilot (up) and U-pilot (down) areas

tree_count also had the same influence as in S-pilot areas, the
density of trees (tree_kde) reaches only about half the influence
as in U-pilot areas. This is caused by a large number of missing
trees in the city’s register (GISMO). The very low influence of water
areas was confirmed.

A detail distribution of SHAP values can be explored in fig. 6
(the summary plots), where feature importance is combined with
feature effects. As expected, large values of green_area increase
the predictions of LAI, while, on the other hand, and large values
of build_area make the model to decrease the predictions of the
LAI. Tree_kde and tree_count both indicate that with more trees
the predictions of the LAI values increase. Their positive effect
is demonstrated by asymmetric value distribution in the case of
S-pilot areas (fig. 6 up). The indifferent influence of tree_kde in fig.6
downright shows issues with the model for U-pilot areas. Values of
water_area are distributed both in positive and negative influence
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effects (SHAP values), resulting in an overall small average impact
of this variable.

5 CONCLUSION
All used methods (correlation analysis, MLR and XGBoost mod-
elling) confirm significant differences between S-pilot and U-pilot
areas in Ostrava. S-pilot areas provide much higher parametric
and non-parametric correlation coefficients between LAI and tree-
kde than U-pilot areas. MLR shows at least double adjusted R2 for
S-areas compared with U-areas. However, results of MLR models
failed in several modelling requirements (heteroscedascity, N distri-
bution of residuals). XGBoost models achieved the best results. The
model for S-pilot areas reached R2=0.41 (RMSE=0.48) where green
and built-up areas play the main role followed by a cumulative im-
portance of tree_kde and count. Results for U-pilot areas are much
worse. This confirms our hypothesis that the LAI works better than
simple evidence of individual trees (or kernel density estimation
of tree coverage) for evaluation of urban green space. It opens the
possibility of using LAI as a suitable proxy for assessment of this
important urban factor for walkability evaluation as well as other
evaluations of urban living conditions.
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